If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+3t+30=40
We move all terms to the left:
t^2+3t+30-(40)=0
We add all the numbers together, and all the variables
t^2+3t-10=0
a = 1; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*1}=\frac{-10}{2} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*1}=\frac{4}{2} =2 $
| 3t+5=2t-5 | | 1/5n+2=10 | | 4x+9=6x+4 | | 2x+19+34+39=180 | | -5x/3=-12 | | 4n+6.2=30.2 | | (2c)/11=(C-3)/4* | | 4-a3=8 | | 14=3/4w | | y-3.4=-1.2 | | 8x-2=3x+5x-2 | | 19=3x+5+4x | | -12x/3=-12 | | x-(–9)=20 | | 7f=–3f+10 | | 2/3x-4/3=5/3 | | 19=3x+5+4 | | 8x-4=3(x+4)-1 | | 9x+2x+5x=0 | | 4n+5n+5n-12n-1=19 | | -4y+3y-2y=-15 | | 5(3x+2)=14x-2 | | 50=2x-22 | | 1/2x+0.4=1/2x+0.4 | | 7x+2x+4x=0 | | 7y+6y-8y=-10 | | 10n+5=20+12n-2n | | 5(x+3)-(4x+2)=-2 | | 3v+2v-3v-2v+3v=9 | | p-11=32 | | 4p+1=2p+13 | | y3=-42 |